Stability of quantum oscillators

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1992 J. Phys. A: Math. Gen. 255177
(http://iopscience.iop.org/0305-4470/25/19/025)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.59
The article was downloaded on 01/06/2010 at 17:18

Please note that terms and conditions apply.

Stability of quantum oscillators

James S Howland
Department of Mathematics, University of Virginia, Charlottesville, VA 22901, USA

Received 2 January 1992, in final form 4 June 1992

Abstract

The quasi-energies of certain periodically forced quantum anharmonic oscillators have no absolutely continuous spectrum.

1. Introduction

Let H be a discrete quantum Hamiltonian on \mathcal{H}, with simple eigenvalues $\lambda_{0}<\lambda_{1}<$ $\lambda_{2}<\cdots$. Let $V(t)$ be a perturbing energy, 2π-periodic in t

$$
V(t+2 \pi)=V(t)
$$

and define the quasi-energy to be

$$
K=-\mathrm{i} \frac{\mathrm{~d}}{\mathrm{~d} t}+H+V(t)
$$

on $L_{2}(0,2 \pi) \otimes \mathcal{H}$ with periodic boundary conditions in t.
Assume that $V(t)$ is bounded and strongly C^{r} in t, and that the spectrum of H has increasing gaps

$$
\begin{equation*}
\Delta \lambda_{n}=\lambda_{n+1}-\lambda_{n} \geqslant c n^{\gamma} \tag{1.1}
\end{equation*}
$$

for some $c>0$ and $\gamma>0$. Under these conditions, one has
Theorem 1 [2]. The quasi-energy K has no absolutely continuous spectrum, provided $r \geqslant\left[\gamma^{-1}\right]+1$.

The question naturally arises as to the necessity of the boundedness of $V(t)$, and the gap condition (1.2). The forced harmonic oscillator

$$
\frac{1}{2} p^{2}+\frac{\omega^{2}}{2} x^{2}+\beta x \sin t
$$

is an explicitly integrable system [1], which is known to be dense pure point, except for $\omega=1$, in which case it is absolutely continuous. The hypothesis of theorem 1 fails on both counts; since x is unbounded, and the gap exponent $\gamma=0$.

On the other hand, the forced anharmonic oscillator

$$
\begin{equation*}
\frac{1}{2} p^{2}+\frac{\omega^{2}}{2} x^{2}+g x^{4}+\beta x \sin t \tag{1.2}
\end{equation*}
$$

satisfies a gap condition. For by Bohr-Sommerfeld (for example), the eigenvalues of the anharmonic oscillator satisfy

$$
\lambda_{n} \sim n^{4} / 3
$$

so that $\gamma=\frac{1}{3}$. The perturbation is, of course, again unbounded.
We shall show that the quasi-energy K for (1.2) is purely singular if β is sufficiently small. In addition, if the anharmonic term x^{4} is replaced by $x^{2 p}$ with $p>2$, then K is purely singular for all β.

The method is an adaptation of the adiabatic analysis of [2 , part I] which shows, roughly, that a relatively H-bounded perturbation $V(t)$ may be replaced by a bounded perturbation at the cost of one time derivative.

2. Adiabatic analysis

Let H be discrete self-adjoint, with $\lambda_{0}<\lambda_{1}<\cdots$, and $V(t)$ a 2π-periodic family of relatively H-bounded operators. Denote by K the quasi-energy

$$
K=-\mathrm{i} \frac{\mathrm{~d}}{\mathrm{~d} t}+H+V(t)
$$

Define the gap

$$
\Delta \lambda_{n}=\lambda_{n+1}-\lambda_{n}
$$

and let Γ_{n} be the circle with centre λ_{n} and radius

$$
r_{n}=\frac{1}{4} \min \left\{\Delta \lambda_{n}, \Delta \lambda_{n-1}\right\}
$$

Define M_{n} by

$$
M_{n}=\sup \left\{\left\|V(t)(H-z)^{-1}\right\|: z \in \Gamma_{n}, 0 \leqslant t \leqslant 2 \pi\right\}
$$

Theorem 2. Assume that all eigenvalues of H are simple (i.e. non-degenerate), and that

$$
\begin{equation*}
\lim M_{n}=0 \tag{2.1}
\end{equation*}
$$

If $V(t)(H+1)^{-1}$ is strongly C^{r+1} in t, for some $r \geqslant 0$, then K is unitarily equivalent to an operator

$$
K_{1}=-\mathrm{i} \frac{\mathrm{~d}}{\mathrm{~d} t}+H_{1}+V_{1}(t)
$$

where $V_{1}(t)$ is bounded in C^{r} in t, and H_{1} is diagonal in the same basis as H, with eigenvalues $\lambda_{n}^{(1)}$ satisfying

$$
\left|\lambda_{n}^{(1)}-\lambda_{n}\right| \leqslant r_{n} .
$$

Proof. The proof follows the adiabatic method of [2, part I]. Let $H(t)=H+V(t)$, $R(z, t)=(H(t)-z)^{-1}$, and $R_{0}(z)=(H-z)^{-1}$. It is easily shown that $R(z, t)$ is strongly C^{r+1} of z is in the resolvent set of $H(t)$.

By (1.1), there exists N such that for $n \geqslant N$,

$$
\begin{equation*}
M_{n} \leqslant \frac{1}{3} \tag{2.2}
\end{equation*}
$$

It therefore follows from

$$
R(z, t)-R_{0}(z)=R_{0}(z) \sum_{n=1}^{\infty}\left[V(t) R_{0}(z)\right]^{n}
$$

that on Γ_{n}

$$
\begin{equation*}
\left\|R(z, t)-R_{0}(z)\right\| \leqslant \frac{3}{2} r_{n}^{-1} M_{n} \tag{2.3}
\end{equation*}
$$

Defining

$$
P_{n}(t)=(2 \pi \mathrm{i})^{-1} \int_{\Gamma_{n}} R(z, t) \mathrm{d} z
$$

we obtain

$$
\left\|P_{n}(t)-P_{n}(0)\right\| \leqslant \frac{3}{2} M_{n} \leqslant \frac{1}{2} .
$$

It follows that $\operatorname{dim} P_{n}(t)=\operatorname{dim} P_{n}(0)=1$, so that there is a unique eigenvalue $\lambda_{n}(t)$ of $H_{\beta}(t)$ inside Γ_{n}. Again, $P_{n}(t)$ and $\lambda_{n}(t)$ are C^{r+1} in t.

Therefore, if one defines the unitary transformation $U(t)$ as in [2], that is, by the first equation following (5.17) on p 319 of [2], then $U(t)$ is strongly C^{r+1} in t, and

$$
U(t) K U^{*}(t)=-\mathrm{i} \frac{\mathrm{~d}}{\mathrm{~d} t}+H_{1}(t)-\mathrm{i} U(t) \dot{U}^{*}(t)
$$

where $H_{1}(t)=\operatorname{diag}\left\{\lambda_{n}^{(1)}(t)\right\}$ is diagonal in the same basis as H.
An elementary gauge transformation [2, p 322], then replaces $\lambda_{n}^{(1)}(t)$ by its mean

$$
\lambda_{n}^{(1)}=\frac{1}{2 \pi} \int_{0}^{2 \pi} \lambda_{n}^{(1)} \mathrm{d} t
$$

The new $V_{1}(t)$ is just $-\mathrm{i} U(t) \dot{U}^{*}(t)$ (gauge-transformed), which is clearly C^{r}.
Corollary 1. If it is assumed only that

$$
\begin{equation*}
M=\sup M_{n}<\infty \tag{2.4}
\end{equation*}
$$

then the same result holds for

$$
H_{\beta}(t)=H+\beta V(t)
$$

if β is sufficiently small.
Proof. The proof of theorem 2 requires only that

$$
M_{n} \leqslant \frac{1}{3} .
$$

If $V(t)$ is replaced by $\beta V(t)$, then M_{n} is replaced by

$$
|\beta| M_{n} \leqslant|\beta| M
$$

So it is enough to require that

$$
|\beta| \leqslant \frac{1}{3 M} .
$$

Remark. These results may be generalized to non-simple (degenerate) eigenvalues by working with block matrices as in the appendix of [3].

3. Anharmonic oscillators

We shall consider the Hamiltonian

$$
H(t)=\frac{1}{2} p^{2}+\frac{\omega^{2}}{2} x^{2}+g x^{2 p}+\beta x \sin t
$$

where $g>0$ and $p \geqslant 1$.
Theorem 3. The quasi-energy of $H(t)$ is purely singular if either $(a) p>1$, or (b) $p=1$ and β is sufficiently small.

Lemma 1. Let A and B be positive self-adjoint, and $H=A+B+1$ the form sum. Then for $0 \leqslant \alpha \leqslant \frac{1}{2}$, the operator $B^{\alpha} H^{-\alpha}$ is bounded.

Proof. We need to show that

$$
\operatorname{ran} H^{-\alpha}=D\left(H^{\alpha}\right) \subset D\left(B^{\alpha}\right)
$$

This is clear if $\alpha=0$ and $\frac{1}{2}$, and therefore holds by interpolation.
Corollary 2. The operator

$$
x\left(p^{2}+x^{2}+g x^{2 p}+1\right)^{-s}
$$

is bounded if $p \geqslant 1$ and $s=1 / 2 p$, where $g>0$.
Proof. Let $B=|x|$, and $A=p^{2}+x^{2}$.
Proof of Theorem 3. The eigenvalues of

$$
H=\frac{1}{2} p^{2}+\frac{\omega^{2}}{2} x^{2}+g x^{2 p}
$$

satisfy

$$
\begin{equation*}
\lambda_{n} \sim c n^{2 p / p+1} \tag{3.1}
\end{equation*}
$$

by Bohr-Sommerfeld. To estimate M_{n}, with $V(t)=F x \sin t$, we need to estimate

$$
x(H-z)^{-1}=\left[x(H+1)^{-1 / 2 p}\right]\left[(H+1)^{1 / 2 p}(H-z)^{-1}\right]
$$

The first factor is bounded by corollary 2. For $z \in \Gamma_{n},(H-z)^{-1}$ has norm $4 r_{n}^{-1}$, where

$$
\begin{equation*}
r_{n} \sim \frac{\lambda_{n}}{n} \sim c n^{(p-1) /(p+1)} \tag{3.2}
\end{equation*}
$$

while $(H+1)^{1 / 2 p}$ is of order

$$
\left(\lambda_{n}\right)^{1 / 2 p} \sim n^{1 /(p+1)}
$$

Therefore

$$
M_{n} \sim n^{1 /(p+1)} n^{-(p-2) /(p+1)}
$$

so that

$$
\lim M_{n}=0
$$

if $p>2$, while M_{n} is bounded for $p=2$.
The result now follows by applying first theorem 2 to reduce to a bounded perturbation, and then theorem 1, with gap exponent

$$
\gamma=\frac{p-1}{p+1}>0
$$

Part (b) uses corollary 1.

Remark. A generalization is perhaps worth remarking. If $x \sin t$ is replaced by $v(x) \sin t$, where $v(x) \sim|x|^{q}$ at infinity, then the same argument shows that

$$
\begin{equation*}
M_{n} \sim\left(\lambda_{n}\right)^{q / 2 p} r_{n}^{-1} \sim n(1+q-p) /(p+1) \tag{3.3}
\end{equation*}
$$

Thus M_{n} tends to zero if

$$
\begin{equation*}
p>1+q . \tag{3.4}
\end{equation*}
$$

Therefore, if absence of an absolutely continuous spectrum is considered to be 'stability', then the x^{4} anharmonic oscillator is stable under

$$
\beta|x|^{\alpha} \sin t
$$

for $0<\alpha<1$, and all β.
Similarly, if $\omega(t)$ is a smooth periodic function, the quasi-energy of

$$
\frac{1}{2} p^{2}+\frac{\omega^{2}(t)}{2} x^{2}+g x^{2 p}
$$

is pureiy singuiar provided that $p>3$.

Acknowledgment

The author wishes to thank M Holthaus for directing his attention to the question of forced anharmonic oscillators.

References

[1] Hagedorn G, Loss M and Slawny J 1986 Non-stochasticity of time-dependent quadratic Hamiltonians and the spectra of transformations J. Phys. A: Math. Gen. 19 521-31
[2] Howland J S 1989 Floquet operators with singular spectrum, I Ann. Inst. H Poincare 50 309-23; II Ann. Inst. H Poincare 325-34
[3] Howland J S 1991 Quantum stability Proc. Scattering Theory Workshop (Aarhus, Denmark) (Berlin: Springer) in press

