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Stability of quantum oscillators 

James S Howland 
Department of Mathematics, University of Virginia, Charlottesville, VA 22901, USA 

Received 2 January 1992, in final form 4 June 1992 

Abstract. The quasi-energies of Certain periodically forced quantum anharmonic oscilla- 
tors have no absolutely mntinuous spectrum. 

d 
d1 

K = -i - + H + V ( t )  

on L2(0,2?r) @I 'H with periodic boundary conditions in t. 

has increasing gaps 
Assume that V(1) is bounded and strongly Cr in 1, and that the spectrum of H 

@.ij AX, = A,+, - A, 2 cn-i 

for some c > 0 and 7 > 0. Under these conditions, one has 

Theorem 1 [2]. The quasi-energy It' has no absolutely continuous spectrum, provided 
T 3 [7-'1 + 1. 

The question naturally arises as to the necessity of the boundedness of V ( t ) ,  and 
the gap condition (1.2). The forced harmonic oscillator 

1 WZ - p 2  + - z z  + pxsin 1 
2 2 

& Bii sx7gcii;y iiiiegii.ab:e sjs;zm [I;, .*F,& byc*fi be des= FGie point, exispi 
for w = 1, in which case it is absolutely continuous. The hypothesis of theorem 1 fails 
on both counts, since x is unbounded, and the gap exponent y = 0. 
On the other hand, the forced anharmonic oscillator 
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5178 J S Howland 

satisfies a gap condition. For by BohrSommerfeld (for example), the eigenvalues of 
the anharmonic oscillator satisfy 

A, - n4/3 
so that y = 4. The perturbation is, of course, again unbounded. 

We shall show that the quasi-energy Ii for (1.2) is purely singular if p is suffi- 
ciently small. In addition, if the anharmonic term x4 is replaced by x z p  with p > 2, 
then IC- is purely singular for ali p. 

The method is an adaptation of the adiabatic analysis of [2, part I] which 
shows, roughly, that a relatively H-bounded perturbation V( t )  may he replaced 
by a bounded perturbation at the cost of one time derivative. 

2. Adiabatic analysis 

Let H be discrete self-adjoint, with A, < A, < . . ., and V ( t )  a 2n-periodic family 
of relatively H-bounded operators. Denote by I< the quasi-energy 

d 
d t  

li = -i - + H + V ( t )  . 

Define the gap 

AA, = A,+, - A, 

and let r, be h e  circle with centre A, and radius 

r, = imin{AA,,AA,-,}.  

Define M, by 

M ,  = s u ~ { l l v ( t ) ( ~  - z)-lll : E r,, 0 < t < 2 n } .  

Theorem 2. Assume that all eigenvalues of H are simple (i.e. non-degenerate), and 
that 

lim M, = 0 .  (2.1) 

If V ( t ) (  H+1)-' is strongly Cy+' in t, for some r 2 0, then h' is unitarily equivalent 
to an operator 

d I<, = -i;ii. + H ,  + V,( t )  

where V,( t )  is bounded in C' in t,  and H, is diagonal in the same basis as H, with 
eigenvalues A$,') satisfying 

- A,I < T n  

Proof. The proof follows the adiabatic method of [2, part I]. Let H ( t )  = H + V ( t ) ,  
R ( r , t ) = ( H ( t ) - 2 ) - ' , a n d  R , ( z ) = ( H - z ) - ' .  Itiseasilyshown that R ( z , t )  is 
strongly C'+' of z is in the resolvent.set of H ( t ) .  
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By (l.l), there exists N such that for n. > N ,  
M ,  Q g .  

It therefore follows from 

we obtain 

IIP,(t) - P,(O)ll< ;M,  6 4. 
It follows that d i m  P,,(t) = dim Pn(0) = 1, so that there is a unique eigenvalue 
X,(t) of H p ( t )  inside r,. Again, P,(t) and X,(t) are C'+* in t. 

Therefore, if one defines the unitary transformation U ( t )  as in [2], that is, by the 
first equation following (5.17) on p 319 of [2], then U(1)  is strongly Crtl in 1,  and 

where H , ( t )  = diag{Xk')(t)} is diagonai in the same basis as H. 
A_n e!ementaq gauge transformation !2; 0 322!, then replaces X?)( t )  by its mean 

The new Vl(t) is just - i  U ( t )  U * ( t )  (gauge-transformed), which is clearly C'. 0 

Corollay I .  If it is assumed only that 

M = sup  M, < 00 

H8(t) = H + P V ( t )  

then the same result holds for 

if p is sufficiently stnail. 

Proof. The proof of theorem 2 requires only that 

If V ( t )  is replaced by p V ( t ) ,  then M ,  is replaced by 
M ,  6 ;. 

IPIM,, < I.al M . 
So it is enough to require that 

1 
IPI 6 3M 0 

Rernurk. These results may be generalized to non-simple (degenerate) eigenvalues 
by working with block matrices as in the appendix of [3]. 
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3. Anharmonic oscillators 

We shall consider the Hamiltonian 
1 W 2  

2 2 
1. 

H ( t ) =  - p 2 + - x 2 + g z 2 P + P x s i n t  

where g > 0 and p 

p = 1 and P is sufficiently small. 

Lemma 1. Let A and E be positive self-adjoint, and H = A +  Et 1 the form sum. 
Then for 0 < a < +, the operator 

Proof. We need to show that 

c.,,,, 3, The T2&ci-eflerpJ of -Tf(t) 3 if (a) i; ; 1, oi @) 

1s ' bounded. 

ranH-O = D ( H " )  c D ( E " ) ,  
This is clear if a = 0 and i, and therefore holds by interpolation. 0 

C o r o h y  2. The operator 
x ( p 2  + 2 2  + gxzp  + 1 ) - a  

is bounded if p 2 1 and s = 1/2p, where g > 0; 

Proof. Let B = 1x1, and A = p 2  + x 2 ,  

Proof of Reorem 3. The eigenvalues of 

0 

1 W 2  

2 2 
H = - p2  + - x 2  + g x Z p  

satisfy 

by BohrSommerfeld. To estimate Mn, with V(t) = F x  sin t, we need to estimate 

The first factor is bounded by corollary 2. For z E r,, ( H  - z)-I  has norm 4r i1 ,  
where 

A, c n 2 F / P + l  (3.1) 

x(  H - z)-I = [ x (  H + 1)-1/2F][( H + 1 ) 1 / 2 P (  H - .)-I] . 

(3.2) 
pn - An n ( F - l ) / ( P t l )  

(X, ) ' /ZP n l / ( P t l ) ,  

M ,  n l / ( P t l ) n - ( P - - 2 ) / ( P t l )  

n 
while ( H  + 1 ) 1 / 2 p  is of order 

Therefore 

so that 
lim M ,  = 0 

if p > 2, while M ,  is bounded for p = 2. 

turbation, and then theorem 1, with gap exponent 
The rsE!t ECK, fC!!GK,s bi appyisg first 2 red-.. to 8 bnca&=d ppp 

y = -  p - l  > o .  
P +  1 

Part (b) uses corollary 1. 0 
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Remark. A generalization is perhaps worth remarking. If x s in  t is replaced by 
v(x)sin 1, where V(Z) - 1zIq at infinity, then the same argument shows that 

(3.3) M ,  N ( A , ) ’ l Z P  T, -1 - 4 1  + 4 -  P ) l ( P +  1). 

Thus M ,  tends to zero if 

p i i + q .  (3.4j 

Therefore, if absence of an absolutely continuous spectrum is considered to be 
‘stability’, then the x4 anharmonic oscillator is stable under 

fllzla sin t 

for 0 < a < 1, and all 0. 
Similarly, if w ( t )  is a smooth periodic function, the quasi-energy of 

is pureiy singuiar provided that p > 3. 
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